from numpy import exp, array, random, dot
training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1],
[0, 1, 1]])
training_set_outputs = array([[0, 1, 1, 0]]).T
random.seed(1)
synaptic_weights = 2 * random.random((3, 1)) - 1
for iteration in range(10000):
output = 1 / (1 +
exp(-(dot(training_set_inputs, synaptic_weights))))
synaptic_weights +=
dot(training_set_inputs.T, (training_set_outputs - output) * output * (1 -
output))
print 1 / (1 + exp(-(dot(array([1, 0, 0]), synaptic_weights))))
No comments:
Post a Comment