Monday, 25 February 2019

LR - ML1


import numpy as np
import matplotlib.pyplot as plt

def estimate_coefficients(x, y):
    # size of the dataset OR number of observations/points
    n = np.size(x)
 
    # mean of x and y
    # Since we are using numpy just calling mean on numpy is sufficient
    mean_x, mean_y = np.mean(x), np.mean(y)
 
    # calculating cross-deviation and deviation about x

  SS_xy=np.sum(y*x)-(n*mean_y*mean_x)
  SS_xx=np.sum(x*x)-(n*mean_x*mean_x)

    # calculating regression coefficients
    b_1 = SS_xy / SS_xx
    b_0 = mean_y - b_1*mean_x
 
    return(b_0, b_1)

    # x,y are the location of points on graph
    # color of the points change it to red blue orange play around

def plot_regression_line(x, y, b):
    # plotting the points as per dataset on a graph
    plt.scatter(x, y, color = "m",marker = "o", s = 30)

    # predicted response vector
    y_pred = b[0] + b[1]*x
 
    # plotting the regression line
    plt.plot(x, y_pred, color = "g")
 
    # putting labels for x and y axis
    plt.xlabel('Size')
    plt.ylabel('Cost')
 
# figimage only adds a background to the current figure. If you don't have an already existing figure, the command wont render anything.

    data = np.random.randn(500, 500)
    plt.figimage(data)

    # function to show plotted graph
    plt.show()
  

def main():
    # Datasets which we create
    x = np.array([ 1,   2,   3,   4,   5,   6,   7,   8,    9,   10])
    y = np.array([300, 350, 500, 700, 800, 850, 900, 900, 1000, 1200])
 
    # estimating coefficients
    b = estimate_coefficients(x, y)
    print("Estimated coefficients:\nb_0 = {} \nb_1 = {}".format(b[0], b[1]))
 
    # plotting regression line
    plot_regression_line(x, y, b)

   
if __name__ == "__main__":
    main()

No comments:

Post a Comment