Sunday, 28 April 2019

NN


# creating training data set
TKS=c(20,10,30,20,80,30)
CSS=c(90,20,40,50,50,80)
Placed=c(1,0,0,0,1,1)

# Here, you will combine multiple columns or features into a single set of data
df=data.frame(TKS,CSS,Placed)

# load library
require(neuralnet)

# fit neural network
nn=neuralnet(Placed~TKS+CSS,data=df, hidden=3,act.fct = "logistic",
                linear.output = FALSE)

# plot neural network
plot(nn)

# creating test set
TKS=c(30,40,85)
CSS=c(85,50,40)

test=data.frame(TKS,CSS)

## Prediction using neural network

Predict=compute(nn,test)
Predict$net.result


# Converting probabilities into binary classes setting threshold level 0.5
prob <- Predict$net.result
pred <- ifelse(prob>0.5, 1, 0)

pred

No comments:

Post a Comment