import numpy as np import pylab as pl from sklearn import neighbors, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target h = .02 # step size in the mesh knn=neighbors.KNeighborsClassifier() # we create an instance of Neighbours Classifier and fit the data. knn.fit(X, Y) # Plot the decision boundary. For that, we will asign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:,0].min() - .5, X[:,0].max() + .5 y_min, y_max = X[:,1].min() - .5, X[:,1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) pl.figure(1, figsize=(4, 3)) pl.set_cmap(pl.cm.Paired) pl.pcolormesh(xx, yy, Z) # Plot also the training points pl.scatter(X[:,0], X[:,1],c=Y ) pl.xlabel('Sepal length') pl.ylabel('Sepal width') pl.xlim(xx.min(), xx.max()) pl.ylim(yy.min(), yy.max()) pl.xticks(()) pl.yticks(()) pl.show()
No comments:
Post a Comment