Wednesday, 15 May 2019

Bidirectional Search


# To check if strings differ by 
# exactly one character
 
def isadjacent(a, b):
    count = 0
    n = len(a)
 
    # Iterate through all characters and return false
    # if there are more than one mismatching characters
    for i in range(n):
        if a[i] != b[i]:
            count += 1
        if count > 1:
            break
 
    return True if count == 1 else False
 
# A queue item to store word and minimum chain length
# to reach the word.
class QItem():
 
    def __init__(self, word, len):
        self.word = word
        self.len = len
 
# Returns length of shortest chain to reach 
# 'target' from 'start' using minimum number
# of adjacent moves.  D is dictionary
def shortestChainLen(start, target, D):
 
    # Create a queue for BFS and insert 
    # 'start' as source vertex
    Q = []
    item = QItem(start, 1)
    Q.append(item)
 
    while( len(Q) > 0):
 
        curr = Q.pop()
 
        # Go through all words of dictionary
        for it in D:
 
            # Process a dictionary word if it is 
            # adjacent to current word (or vertex) of BFS
            temp = it
            if isadjacent(curr.word, temp) == True:
 
                # Add the dictionary word to Q
                item.word = temp
                item.len  = curr.len + 1
                Q.append(item)
 
                # Remove from dictionary so that this 
                # word is not processed again.  This is 
                # like marking visited
                D.remove(temp)
 
                # If we reached target
                if temp == target:
                    return item.len
 
D = []
D.append("poon")
D.append("plee")
D.append("same")
D.append("poie")
D.append("plie")
D.append("poin")
D.append("plea")
start = "toon"
target = "plea"
print("Length of shortest chain is: %d" % shortestChainLen(start, target, D) )

No comments:

Post a Comment