import pandas as pd
# Location of dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
# Assign colum names to the dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'Class']
# Read dataset to pandas dataframe
irisdata = pd.read_csv(url, names=names) 
In [2]:
irisdata.head()  
Out[2]:
In [3]:
# Assign data from first four columns to X variable
X = irisdata.iloc[:, 0:4]
# Assign data from first fifth columns to y variable
y = irisdata.select_dtypes(include=[object])  
In [4]:
y.head() 
Out[4]:
In [5]:
y.Class.unique()  
Out[5]:
In [6]:
from sklearn import preprocessing  
le = preprocessing.LabelEncoder()
y = y.apply(le.fit_transform)  
In [7]:
y
Out[7]:
In [8]:
from sklearn.model_selection import train_test_split  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)  
In [9]:
from sklearn.preprocessing import StandardScaler  
scaler = StandardScaler()  
scaler.fit(X_train)
X_train = scaler.transform(X_train)  
X_test = scaler.transform(X_test)  
In [10]:
from sklearn.neural_network import MLPClassifier  
mlp = MLPClassifier(hidden_layer_sizes=(10, 10, 10), max_iter=1000)  
mlp.fit(X_train, y_train.values.ravel())  
Out[10]:
In [11]:
predictions = mlp.predict(X_test)  
In [12]:
predictions
Out[12]:
In [13]:
#Evaluating the Algorithm
from sklearn.metrics import classification_report, confusion_matrix  
print(confusion_matrix(y_test,predictions))  
print(classification_report(y_test,predictions))
No comments:
Post a Comment