# Importing
the dataset
dataset =
read.csv(‘social.csv')
dataset =
dataset[3:5]
# Encoding
the target feature as factor
dataset$Purchased
= factor(dataset$Purchased, levels = c(0, 1))
###########################################
# Splitting
the dataset into the Training set and Test set
install.packages('caTools')
library(caTools)
set.seed(123)
split =
sample.split(dataset$Purchased, SplitRatio = 0.75)
training_set
= subset(dataset, split == TRUE)
test_set =
subset(dataset, split == FALSE)
View(training_set)
View(test_set)
# Feature
Scaling
training_set[-3]
= scale(training_set[-3])
test_set[-3]
= scale(test_set[-3])
View(training_set)
View(test_set)
##############################################
# Fitting
SVM to the Training set
install.packages('e1071')
library(e1071)
classifier =
svm(formula = Purchased ~ .,
data = training_set,
type = 'C-classification',
kernel = 'linear')
print(classifier)
# Predicting
the Test set results
y_pred =
predict(classifier, newdata = test_set[-3])
# Making the
Confusion Matrix
cm =
table(test_set[, 3], y_pred)
print(cm)
################################################
#Visualizing
the Training set results
# installing
library ElemStatLearn
library(ElemStatLearn)
# Plotting
the training data set results
set =
training_set
X1 =
seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)
X2 =
seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)
grid_set =
expand.grid(X1, X2)
colnames(grid_set)
= c('Age', 'EstimatedSalary')
y_grid =
predict(classifier, newdata = grid_set)
plot(set[,
-3],
main = 'SVM (Training set)',
xlab = 'Age', ylab = 'Estimated Salary',
xlim = range(X1), ylim = range(X2))
contour(X1,
X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
points(grid_set,
pch = '.', col = ifelse(y_grid == 1, 'coral1', 'aquamarine'))
points(set,
pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
##################################################
#Visualizing
the Test set results
set =
test_set
X1 =
seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)
X2 =
seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)
grid_set =
expand.grid(X1, X2)
colnames(grid_set)
= c('Age', 'EstimatedSalary')
y_grid =
predict(classifier, newdata = grid_set)
plot(set[,
-3], main = 'SVM (Test set)',
xlab = 'Age', ylab = 'Estimated Salary',
xlim = range(X1), ylim = range(X2))
contour(X1,
X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
points(grid_set,
pch = '.', col = ifelse(y_grid == 1, 'coral1', 'aquamarine'))
points(set,
pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
#############################################
No comments:
Post a Comment