Saturday, 25 May 2019

Text Mining


Step 1 : Install and load the required packages
Type the R code below, to install and load the required packages:
# Install
install.packages("tm")  # for text mining
install.packages("SnowballC") # for text stemming
install.packages("wordcloud") # word-cloud generator
install.packages("RColorBrewer") # color palettes
# Load
library("tm")
library("SnowballC")
library("wordcloud")
library("RColorBrewer")

Step 2 : Text mining

load the text

# Read the text file from internet
filePath <- "http://www.sthda.com/sthda/RDoc/example-files/martin-luther-king-i-have-a-dream-speech.txt"
text <- readLines(filePath)
 
2.     Load the data as a corpus
# Load the data as a corpus
docs <- Corpus(VectorSource(text))
 
3.     Inspect the content of the document
inspect(docs)
 
 

Text transformation

Transformation is performed using tm_map() function to replace, for example, special characters from the text.
Replacing “/”, “@” and “|” with space:
toSpace <- content_transformer(function (x , pattern ) gsub(pattern, " ", x))
docs <- tm_map(docs, toSpace, "/")
docs <- tm_map(docs, toSpace, "@")
docs <- tm_map(docs, toSpace, "\\|")

Cleaning the text

the tm_map() function is used to remove unnecessary white space, to convert the text to lower case, to remove common stopwords like ‘the’, “we”.
The information value of ‘stopwords’ is near zero due to the fact that they are so common in a language. Removing this kind of words is useful before further analyses. For ‘stopwords’, supported languages are danish, dutch, english, finnish, french, german, hungarian, italian, norwegian, portuguese, russian, spanish and swedish. Language names are case sensitive.

# Convert the text to lower case
docs <- tm_map(docs, content_transformer(tolower))
 # Remove numbers
docs <- tm_map(docs, removeNumbers)
# Remove english common stopwords
 docs <- tm_map(docs, removeWords, stopwords("english"))
# Remove your own stop word # specify your stopwords as a character vector docs <- tm_map(docs, removeWords, c("blabla1", "blabla2"))
 # Remove punctuations
docs <- tm_map(docs, removePunctuation)
 # Eliminate extra white spaces
docs <- tm_map(docs, stripWhitespace)
# Text stemming # docs <- tm_map(docs, stemDocument)

Step 4 : Build a term-document matrix

Document matrix is a table containing the frequency of the words. Column names are words and row names are documents. The function TermDocumentMatrix() from text mining package can be used as follow :
dtm <- TermDocumentMatrix(docs)
m <- as.matrix(dtm)
v <- sort(rowSums(m),decreasing=TRUE)
d <- data.frame(word = names(v),freq=v)
head(d, 10)

      word freq
will         will   17
freedom   freedom   13
ring         ring   12
day           day   11
dream       dream   11
let           let   11
every       every    9
able         able    8
one           one    8
together together    7

Step 5 : Generate the Word cloud

The importance of words can be illustrated as a word cloud as follow :
set.seed(1234)
wordcloud(words = d$word, freq = d$freq, min.freq = 1,
          max.words=200, random.order=FALSE, rot.per=0.35, 
          colors=brewer.pal(8, "Dark2"))

word cloud and text mining, I have a dream speech from Martin Luther King
Explore frequent terms and their associations
You can have a look at the frequent terms in the term-document matrix as follow. In the example below we want to find words that occur at least four times :
findFreqTerms(dtm, lowfreq = 4)
 [1] "able"     "day"      "dream"    "every"    "faith"    "free"     "freedom"  "let"      "mountain" "nation" 
[11] "one"      "ring"     "shall"    "together" "will"   
You can analyze the association between frequent terms (i.e., terms which correlate) using findAssocs() function. The R code below identifies which words are associated with “freedom” in I have a dream speech :
findAssocs(dtm, terms = "freedom", corlimit = 0.3)
$freedom
         let         ring  mississippi mountainside        stone        every     mountain        state
        0.89         0.86         0.34         0.34         0.34         0.32         0.32         0.32
The frequency table of words
head(d, 10)
             word freq
will         will   17
freedom   freedom   13
ring         ring   12
day           day   11
dream       dream   11
let           let   11
every       every    9
able         able    8
one           one    8
together together    7
Plot word frequencies
The frequency of the first 10 frequent words are plotted :
barplot(d[1:10,]$freq, las = 2, names.arg = d[1:10,]$word,
        col ="lightblue", main ="Most frequent words",
        ylab = "Word frequencies")
word cloud and text mining


No comments:

Post a Comment