from sklearn import tree
clf = tree.DecisionTreeClassifier()
#[height, hair-length, voice-pitch]
X = [ [180, 15,0],
[167, 42,1],
[136, 35,1],
[174, 15,0],
[141, 28,1]]
Y = ['man', 'woman', 'woman', 'man', 'woman']
clf = clf.fit(X, Y)
prediction = clf.predict([[133, 37,1]])
print(prediction)
______________________________________________________
import pydotplus
from sklearn.datasets import load_iris
from sklearn import tree
import collections
# Data Collection
X = [ [180, 15,0],
[177, 42,0],
[136, 35,1],
[174, 65,0],
[141, 28,1]]
Y = ['man', 'woman', 'woman', 'man',
'woman']
data_feature_names = [ 'height', 'hair length', 'voice pitch' ]
# Training
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X,Y)
# Visualize data
dot_data = tree.export_graphviz(clf,
feature_names=data_feature_names,
out_file=None,
filled=True,
rounded=True)
graph = pydotplus.graph_from_dot_data(dot_data)
colors = ('turquoise', 'orange')
edges = collections.defaultdict(list)
for edge in graph.get_edge_list():
edges[edge.get_source()].append(int(edge.get_destination()))
for edge in edges:
edges[edge].sort()
for i in range(2):
dest =
graph.get_node(str(edges[edge][i]))[0]
dest.set_fillcolor(colors[i])
graph.write_png('tree.png')
No comments:
Post a Comment