library("partykit")
airq <- subset(airquality, !is.na(Ozone))
ct <- ctree(Ozone ~ ., data = airq)
partykit:::.list.rules.party(ct)
________________________________________
detach("package:partykit", unload=TRUE)
library(party)
airct <- party::ctree(Ozone ~ ., data = airq)
t(sapply(unique(where(airct)), function(x) {
n <- nodes(airct, x)[[1]]
Ozone <- airq[as.logical(n$weights), "Ozone"]
cbind.data.frame("Node" = as.integer(x),
"n" = length(Ozone),
"Avg."= mean(Ozone),
"Variance"= var(Ozone),
"SSE" = sum((Ozone - mean(Ozone))^2))
}))
___________________________________________
sum of squared errors of prediction (SSE)
_________________________________________
#print P values
terNodes <- unique(where(airct))
setdiff(1:max(terNodes), terNodes)
sapply(setdiff(1:max(terNodes), terNodes), function(x) {
n <- nodes(airct, x)[[1]]
pvalue <- 1 - nodes(airct, x)[[1]]$criterion$maxcriterion
plab <- ifelse(pvalue < 10^(-3),
paste("p <", 10^(-3)),
paste("p =", round(pvalue, digits = 3)))
c("Node" = x, "P-value" = plab)
})
________________________________________________
# print values from the node in ctree
a1=where(output)
table(a1)
print(a1)
input$x1=where(output)
View(input)
N4=subset(input,input$x1==4)
N5=subset(input,input$x1==5)
N6=subset(input,input$x1==6)
N7=subset(input,input$x1==7)
View(N1)
_________________________________________
airq <- subset(airquality, !is.na(Ozone))
ct <- ctree(Ozone ~ ., data = airq)
partykit:::.list.rules.party(ct)
________________________________________
detach("package:partykit", unload=TRUE)
library(party)
airct <- party::ctree(Ozone ~ ., data = airq)
t(sapply(unique(where(airct)), function(x) {
n <- nodes(airct, x)[[1]]
Ozone <- airq[as.logical(n$weights), "Ozone"]
cbind.data.frame("Node" = as.integer(x),
"n" = length(Ozone),
"Avg."= mean(Ozone),
"Variance"= var(Ozone),
"SSE" = sum((Ozone - mean(Ozone))^2))
}))
___________________________________________
sum of squared errors of prediction (SSE)
_________________________________________
#print P values
terNodes <- unique(where(airct))
setdiff(1:max(terNodes), terNodes)
sapply(setdiff(1:max(terNodes), terNodes), function(x) {
n <- nodes(airct, x)[[1]]
pvalue <- 1 - nodes(airct, x)[[1]]$criterion$maxcriterion
plab <- ifelse(pvalue < 10^(-3),
paste("p <", 10^(-3)),
paste("p =", round(pvalue, digits = 3)))
c("Node" = x, "P-value" = plab)
})
________________________________________________
# print values from the node in ctree
a1=where(output)
table(a1)
print(a1)
input$x1=where(output)
View(input)
N4=subset(input,input$x1==4)
N5=subset(input,input$x1==5)
N6=subset(input,input$x1==6)
N7=subset(input,input$x1==7)
View(N1)
_________________________________________
No comments:
Post a Comment